Selection And Management Of Recipients

By | 2012-10-24

Selection and management of recipient mares for an embryo transfer program is the most important factor affecting pregnancy rates. On farms handling only one or two donors, recipient mares may be purchased from local backyard horse owners who are familiar with the mare’s reproductive history. However, acquiring a large number of recipient mares requires that mares be purchased from local sale barns. Thus the reproductive history of these mares is unknown. In either case the recipient mare should meet the following criteria: 900 to 1200 pounds; 3 to 10 years of age; and broken to halter. The effect of size of recipient on the subsequent size of the foal has not truly been determined. However, the size of the donor mare should be matched with the recipient as nearly as possible. This may be difficult when obtaining embryos from large warmbloods or draft horses.

Typically nonlactating mares are easier to use in an embryo transfer program than a mare that is lactating. If a lactating mare is not being used, the animals should not be used as recipients until at least the second postpartum cycle. Numerous types of recipient mares can be used: ovarian-intact cycling mares; ovariectomized mares; mares in anestrus; and mares during the transitional period. This author prefers to use ovarian intact normal cycling mares. However, pregnancy rates using ovariectomized, progesterone-treated mares have been shown to be similar to ovarian-intact mares.

Occasionally, early in the year a scarcity of normal cycling mares occurs. The alternative at that time of the year is to use either an anestrous mare or a transitional mare. In this author’s experience transitional mares are more appropriate to use than truly anestrous mares. Mares in transition should be selected based on the presence of endometrial folds. This indicates that estrogen is being secreted. Transitional mares can then be placed on progesterone at the time of the donor mares ovulation. The suggested progestin treatment for either ovariectomized mares or transitional mares includes altrenogest (Regumate) daily or 150 mg of progesterone injected daily. With the use of ovariectomized mares, progesterone treatment must continue until the placenta begins to produce progesterone at approximately 100 to 120 days. With transitional mares, progesterone treatment may be terminated once the mare has ovulated and developed secondary corpora lutea during early gestation.

The recipient mare should be examined by rectal palpation and ultrasonography before purchase. The external genitalia are observed for normal conformation. Those mares with poor external conformation that may predispose them to wind sucking are generally rejected. Mares are then palpated per rectum and the size and tone of the uterus, cervix, and ovary are determined. The uterus and ovary are then examined with ultrasonography. Evidence of pathology such as uterine fluid, uterine cyst, ovarian abnormalities, or the presence of air or debris in the uterus would render the mare unsuitable for purchase as an embryo recipient. In addition, any mare found to be pregnant is not purchased unless the pregnancy is less than 30 days.

Approximately 15% to 20% of the mares initially presented are rejected. Mares that pass the initial examination are given a breeding soundness exam similar to the exam of the donor mare. Recipients are vaccinated for influenza, tetanus, and rhinopneumonitis and are quarantined from other mares for at least a period of 30 days. Those mares that are in thin condition are fed a concentrate ration and a free-choice alfalfa hay. The majority of recipients are purchased in late fall and placed on a 16-hour lighting regimen beginning December 1. Starting approximately February 1, mares are palpated and examined with ultrasonography twice per week until a follicle greater than 35 mm is obtained. Mares with follicles greater than 30 mm are examined daily with ultrasonography until ovulation. Ideally, recipient mares should have one or two normal estrous cycles prior to being used as a recipient. Mares are excluded as potential recipients if they consistently have erratic or abnormal estrous cycles.

Hormonal manipulation of the recipient mare’s estrous cycle is an important component of an embryo transfer program. The degree of hormonal manipulation is dependent upon the size of the embryo transfer operation. Smaller operations that deal with only one or two donors use more hormonal manipulation than larger operations that may have a large number of donors and recipients. Small operations should place the donor and one or two recipients on progesterone for 8 to 10 days and then administer prostaglandins on the last day of treatment. The progesterone can either be altrenogest used daily or injectable progesterone at a level of 150 mg daily for the same length of time. It is not uncommon to use a combination of progesterone and estrogen (150 mg progesterone, 10 mg estradiol-17β) daily for 8 to 10 days followed by prostaglandins.

The donors and recipients will ovulate 7 to 10 days after prostaglandin treatment. Generally, having the recipient ovulate either 1 day before or up to 3 days after the donor mare is desirable. This can be accomplished by using hCG (Chorulon) or GnRH (Ovuplant) to induce ovulation in either the recipient or donor mare to provide optimal synchrony of ovulation. In a larger embryo transfer station it is common to manipulate the cycle by using only prostaglandins, hCG, or GnRH. Typically the ovulation dates of the recipient are recorded and once a donor mare ovulates then a recipient is selected that has ovulated either 1 day before or up to 3 days after the donor. If a mare is not used as the recipient she is then given prostaglandins 9 or 10 days after her ovulation and induced to return to estrus.

Each recipient mare is given a final examination 5 days after ovulation before to being used as the recipient. Mares are classified as acceptable, marginal, or nonacceptable based on this 5-day exam. The 5-day exam includes palpation per rectum for uterine and cervical tone, and ultrasonography of the uterus and ovaries. An acceptable recipient should have a round, tubular, firm uterus and a closed cervix. She also would have the absence of endometrial folds, a normal sized uterus, and the presence of a visible corpus luteum. Mares generally are placed in the marginal category based on a decrease in uterine tone or cervical tone or perhaps the presence of grade 1 endometrial folds. Unacceptable recipients typically have poor uterine tone, a soft-open cervix, or presence of endometrial folds and/or fluid in the uterus. A retrospective examination of this author’s commercial embryo transfer program has revealed that the 5-day check is the best predictor of whether or not a recipient mare will become pregnant.

Embryos are transferred either surgically by flank incision or nonsurgically. Most of the embryo transfer stations are now using nonsurgical transfer methods. The details of the transfer methods are presented in the subsequent chapter. Mares are examined with ultrasonography for pregnancy detection 4 or 5 days after transfer. Mares that are diagnosed pregnant are reexamined on days 16, 25, 35, and 50. Mares not confirmed pregnant on the initial examination (day 12) are reexamined 2 days later. If the ultrasound scan continues to be negative the mare is considered not pregnant and given prostaglandin to induce estrus. Unless the embryo was extremely small (<150 microns) the majority of mares that are to be pregnant have a visible vesicle at 12 days of gestation. Those mares in which the vesicle does not appear until 14 or 16 days of gestation have delayed embryonic development and are more likely to suffer early embryonic loss. The initial ultrasound examination allows the breeder to decide whether to rebreed the donor and attempt a second embryo recovery. The ultrasound exam at 25 days determines whether a fetus is present with a viable heartbeat. The majority of losses that do appear in embryo transfer recipients occur between days 12 and 35. However, early embryonic loss before 50 days of gestation appears to be no greater in embryo transfer recipients than other pregnant mares that are inseminated with either fresh or cooled semen. Mares that fail to become pregnant after an embryo transfer are generally used a second time but not a third. The pregnancy rates on mares receiving an embryo on a second attempt are no different than those that receive an embryo only one time and become pregnant.

Pregnant recipients should be fed a maintenance ration similar to other broodmares during the first two thirds of gestation and then administered extra energy in the form of concentrate rations during the final one third of pregnancy. Recipients should be monitored closely around the time of impending parturition. Management procedures identical to those used for foaling broodmares should be used. No greater difficulty in foaling embryo transfer recipients than normal broodmares has been found. The influence of the size of the recipient versus size of donor on ease of foaling has not been adequately studied, although this does not appear nearly as critical in horses as it does in cattle.

In summary, a relatively high pregnancy rate can be anticipated in an embryo transfer program if management of the donor and recipient mares are maximized. Attention should be given to selection of both donor and recipient, nutrition, proper monitoring of the donor and recipient with palpation per rectum and ultrasonography, careful assessment of the recipient, and management of the recipient after embryo transfer. Day 12 pregnancy rates for either fresh or cooled semen should be 75% to 80% and those at 50 days of gestation should be 65% to 70%.